Self-Referenced Spectral Interferometry for Femtosecond Pulse Characterization

نویسندگان

  • Xiong Shen
  • Peng Wang
  • Jun Liu
  • Takayoshi Kobayashi
  • Ruxin Li
چکیده

Since its introduction in 2010, self-referenced spectral interferometry (SRSI) has turned out to be an analytical, sensitive, accurate, and fast method for characterizing the temporal profile of femtosecond pulses. We review the underlying principle and the recent progress in the field of SRSI. We present our experimental work on this method, including the development of self-diffraction (SD) effect-based SRSI (SD-SRSI) and transient-grating (TG) effect-based SRSI (TG-SRSI). Three experiments based on TG-SRSI were performed: (1) We built a simple TG-SRSI device and used it to characterize a sub-10 fs pulse with a center wavelength of 1.8 μm. (2) On the basis of the TG effect, we successfully combined SRSI and frequency-resolved optical gating (FROG) into a single device. The device has a broad range of application, because it has the advantages of both SRSI and FROG methods. (3) Weak sub-nanojoule pulses from an oscillator were successfully characterized using the TG-SRSI device, the optical setup of which is smaller than the palm of a hand, making it convenient for use in many applications, including sensor monitoring the pulse profile of laser systems. In addition, the SRSI method was extended for single-shot characterization of the temporal contrast of ultraintense and ultrashort laser pulses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-referenced spectral interferometry for ultrashort infrared pulse characterization.

We demonstrate for the first time (to our knowledge) characterization of ultrashort IR pulses by self-referenced spectral interferometry. Both sub-55-fs pulses from 1.4 μm to 2 μm and broadband 2.5-cycle pulses at 1.65 μm (13 fs FWHM) are characterized.

متن کامل

Tunable spectral interferometry for broadband phase detection by use of a pair of optical parametric amplifiers

We demonstrate tunable, single-pulse spectral phase measurement of broadband ultrafast signals by linear spectral interferometry. The approach is based on a coherently coupled pair of optical parametric amplifiers (OPAs). The first amplifier is the source of a signal pulse that is coupled into a nonlinear medium, where the pulse generates a broadband signal by nonlinear interactions; the second...

متن کامل

Standards for ultrashort-laser-pulse-measurement techniques and their consideration for self-referenced spectral interferometry.

Issues important for new ultrashort-pulse-measurement techniques include the generation of theoretical example traces for common pulses, validity ranges, ambiguities, coherent artifacts, device calibration sensitivity, iterative retrieval convergence, and feedback regarding measurement accuracy. Unfortunately, in the past, such issues have gone unconsidered, yielding long histories of unsatisfa...

متن کامل

Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses

A modified-SPIDER (spectral phase interferometry for direct electric-field reconstruction) technique where external powerful optical pulses are employed as a light source of chirped reference pulses for sum-frequency generation is proposed and is demonstrated experimentally. It provides great improvements in sensitivity and signal-to-noise ratio, and will enable a single-shot measurement for a ...

متن کامل

Self-referenced characterization of optical frequency combs and arbitrary waveforms using a simple, linear, zero-delay implementation of spectral shearing interferometry.

We discuss a simple, linear, zero-delay implementation of spectral shearing interferometry for amplitude and phase characterization of optical frequency comb sources and arbitrary waveforms. We demonstrate this technique by characterizing two different high repetition rate (approximately 10 GHz) frequency comb sources, generated respectively by strong external and intracavity phase modulation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017